шјес
cbac

GCE AS MARKING SCHEME

SUMMER 2018

AS (NEW)
FURTHER MATHEMATICS UNIT 2 FURTHER STATISTICS A 2305U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE Further Mathematics - AS Unit 2 Further Statistics A

Solutions and Mark Scheme

SUMMER 2018 MARK SCHEME

Qu. No.	Solution	Mark	Notes
1(a)	$\begin{aligned} E(X) & =3.6 \text { and } E(Y)=4 \\ E(X Y) & (=3.6 \times 4) \\ & =14.4 \end{aligned}$	B1 B1	Both seen or implied in (a) or (b)
(b)	$\begin{aligned} \operatorname{Var}(X) & =2.52 \quad \text { and } \quad \operatorname{Var}(Y)=4 \\ E\left(X^{2}\right) & =\operatorname{Var}(X)+(E(X))^{2} \\ & =2.52+3.6^{2} \\ & =15.48 \\ E\left(Y^{2}\right) & =4+4^{2} \\ & =20 \end{aligned}$	B1 M1 A1 A1	Both si Correct method for either $E\left(X^{2}\right)$ or $E\left(Y^{2}\right)$
	$\begin{aligned} \operatorname{Var}(X Y) & =E\left(X^{2}\right) E\left(Y^{2}\right)-(E(X Y))^{2} \\ & =15.48 \times 20-14.4^{2} \\ & =102.24 \end{aligned}$	m1 A1	Dep on previous M1 FT their 14.4, 15.48 and 20 for m 1 only. cao
		[8]	

\begin{tabular}{|c|c|c|c|}
\hline Qu. No. \& Solution \& Mark \& Notes \\
\hline 2(a) \& \[
\begin{aligned}
P(X>5) \& =1-F(5) \\
\& =0.1319(44 \ldots) \quad \text { or } \quad \frac{19}{144} \quad \text { awrt } 0.132
\end{aligned}
\] \& M1
A1 \& \\
\hline (b) \& \[
\begin{aligned}
\& P \text { (torch will operate for more than } 50 \text { hours) }=0.13194444 \ldots{ }^{3} \\
\& =0.00229(70 \ldots .) \quad \text { awrt } 0.0023
\end{aligned}
\] \& M1
A1 \& \[
\text { 'Their }(\mathrm{a})^{3}
\] \\
\hline (c) \& \begin{tabular}{l}
\[
\begin{aligned}
\& F(4.5)=0.7382 \ldots \\
\& F(4.6)=0.7660 \ldots
\end{aligned}
\] \\
Since \(F(4.6)\) is greater than 0.75 and \(F(4.5)\) is less than 0.75 the solution to \(F(q)=0.75\) is between 4.5 and 4.6
\end{tabular} \& M1
A1
E1 \& \begin{tabular}{l}
M1 for attempt to find \(F(4.5)\) and \(F(4.6)\) \\
A1 for both answers. If rearranged to
\[
q^{4}-8 q^{3}+324=0
\] \\
A1 is for
\[
5.0625 \text { and }-6.9424 \text {. }
\] \\
Accept oe
\end{tabular} \\
\hline (d) \& \[
\begin{aligned}
\& f(x)=F^{\prime}(x) \\
\& f(x)=\frac{8 \times 3 x^{2}}{432}-\frac{4 x^{3}}{432} \\
\& f(x)= \begin{cases}\frac{x^{2}}{108}(6-x) \& 0 \leq x \leq 6 \\
0 \& \text { otherwise }\end{cases} \\
\& f(0) \text { e. }
\end{aligned}
\]
\[
x=
\] \& M1
A1

B1 \& | M1 Attempt at differentiating with at least one power of x decreasing |
| :--- |
| A1 Correct expression for $f(x)$ for x between 0 and 6. |
| B1 for " 0 otherwise" and range $0 \leq x \leq 6$ |

\hline (e) \& $$
\begin{aligned}
& E(X)=\int_{0}^{6} \frac{x^{3}}{108}(6-x) d x \\
& E(X)=\frac{1}{108} \int_{0}^{6}\left(6 x^{3}-x^{4}\right) d x
\end{aligned}
$$ \& M1 \& M1 Attempt at integrating $x f(x)$ with at least one power of x increasing FT 'their $f(x)$ ' of equivalent difficulty (ignore limits here)

\hline \& \[
$$
\begin{aligned}
& E(X)=\frac{1}{108}\left[\frac{6 x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{6} \\
& E(X)=3.6 \\
& \text { Mean }=36 \text { hours }
\end{aligned}
$$

\] \& | A1 |
| :--- |
| A1 |
| B1 | \& A1 correct integration with correct limits FT cao FT their derived $E(X)$

\hline (f) \& | Valid explanation |
| :--- |
| e.g. It is possible for a battery to last more than 60 hours. |
| e.g. X could be greater than 6 . | \& | E1 |
| :--- |
| [15] | \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Qu. \\
No.
\end{tabular} \& \multicolumn{5}{|c|}{Solution} \& Mark \& Notes \\
\hline \multirow[t]{2}{*}{5(a)
(b)(i)} \& \multicolumn{5}{|l|}{\begin{tabular}{l}
\(H_{0}\) : The data can be modelled by the Binomial distribution
\[
B(6,0.6)
\] \\
\(H_{1}\) : The data cannot be modelled by the Binomial distribution
\[
B(6,0.6)
\]
\end{tabular}} \& B1 \& Both \\
\hline \& \multicolumn{5}{|l|}{Expected frequencies
\[
\begin{aligned}
\& (d=(P(X=3) \times 50) \\
\& d=13.824 \\
\& (e=(P(X=4) \times 50) \\
\& e=15.552
\end{aligned}
\]} \& B1
B1 \& \\
\hline \multirow[t]{8}{*}{(ii)} \& \multicolumn{5}{|l|}{Combine classes with expected frequencies less than 5} \& M1 \& SC for solution \\
\hline \& \begin{tabular}{|l|}
\hline \begin{tabular}{l}
Number \\
of \\
policies \\
sold
\end{tabular} \\
\hline Observed \\
\hline Expected \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& \hline 0,1 \text { or } 2 \\
\& \\
\& \hline 13 \\
\& \hline 8.96 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 3 \\
\& \\
\& \hline 12 \\
\& \hline 13.824
\end{aligned}
\] \& \[
\begin{aligned}
\& 4 \\
\& \\
\& \hline 15 \\
\& \hline 15.552
\end{aligned}
\] \& \begin{tabular}{|l|}
\hline 5 or 6 \\
\hline 10 \\
\hline 11.664 \\
\hline
\end{tabular} \& \& \begin{tabular}{l}
combine classes or only combines some. \\
(M0M1m1A0B1B1 B1B1)
\end{tabular} \\
\hline \& \multicolumn{5}{|l|}{\[
\begin{aligned}
\& \text { Use of } \chi^{2} \text { stat }=\sum \frac{(O-E)^{2}}{E} \text { or } \sum \frac{O^{2}}{E}-N \\
\& =\frac{(13-8.96)^{2}}{8.96}+\frac{(12-13.824)^{2}}{13.824}+\frac{(15-15.552)^{2}}{15.552}+\frac{(10-11.664)^{2}}{11.664}
\end{aligned}
\]} \& M1

m1 \& $$
\begin{aligned}
& =\frac{13^{2}}{8.96}+\frac{12^{2}}{13.824} \\
& +\frac{15^{2}}{15.552}+\frac{10^{2}}{11.664} \\
& -50
\end{aligned}
$$

\hline \& \multicolumn{5}{|l|}{\[
=2.319(254605)

\]} \& A1 \& | cao |
| :--- |
| Example of SC |

\hline \& \multicolumn{5}{|l|}{\[
D F=3

\]} \& B1 \& | FT their table. |
| :--- |
| May see $D F=6$ |

\hline \& \multicolumn{5}{|l|}{10\% CV $=6.251$} \& B1 \& FT their DF

$$
C V=10.645
$$

\hline \& \multicolumn{5}{|l|}{Since $2.319<6.251$ do not reject H_{0}.} \& B1 \& $$
\begin{aligned}
& \text { Since } \\
& 17.394>10.645 \\
& \text { Reject } \mathrm{H}_{0}
\end{aligned}
$$

\hline \& \multicolumn{5}{|l|}{Insufficient evidence to reject the binomial model B(6, 0.6)} \& B1 \& There is sufficient evidence to reject the binomial model $B(6,0.6)$ Only award final B1 if previous 3 B1 awarded.

\hline (c) \& \multicolumn{5}{|l|}{6 is the number of clients she sees in one day AND 0.6 is the probability of selling a policy to each client.} \& | E1 |
| :--- |
| [12] | \& Must state one day.

\hline
\end{tabular}

Qu. No.	Solution	Mark	Notes
$7(\mathrm{a})$	$b=\frac{49.4511}{3.48}$		
$b=14.2(0977 \ldots)$	M1		
$a=\frac{898}{14}-14.2(0977 \ldots) \times \frac{46.2}{14}$ $=17.2(5061 \ldots)$ $y=17.3+14.2 x$	M1		
A1	B1	B1 FT 'their' gradient and intercept.	
(b)The regression line x on y would be more appropriate. OR would not be able to rearrange this equation to find x from y.	E1		
Gives a value outside the range. OR 90 is outside the range.	E1		

